Compare commits

...

11 Commits

6 changed files with 1942 additions and 41 deletions

1
.gitignore vendored Normal file
View File

@ -0,0 +1 @@
*.bak

253
i2c_master.vhd Normal file
View File

@ -0,0 +1,253 @@
--------------------------------------------------------------------------------
--
-- FileName: i2c_master.vhd
-- Dependencies: none
-- Design Software: Quartus II 64-bit Version 13.1 Build 162 SJ Full Version
--
-- HDL CODE IS PROVIDED "AS IS." DIGI-KEY EXPRESSLY DISCLAIMS ANY
-- WARRANTY OF ANY KIND, WHETHER EXPRESS OR IMPLIED, INCLUDING BUT NOT
-- LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
-- PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL DIGI-KEY
-- BE LIABLE FOR ANY INCIDENTAL, SPECIAL, INDIRECT OR CONSEQUENTIAL
-- DAMAGES, LOST PROFITS OR LOST DATA, HARM TO YOUR EQUIPMENT, COST OF
-- PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR SERVICES, ANY CLAIMS
-- BY THIRD PARTIES (INCLUDING BUT NOT LIMITED TO ANY DEFENSE THEREOF),
-- ANY CLAIMS FOR INDEMNITY OR CONTRIBUTION, OR OTHER SIMILAR COSTS.
--
-- Version History
-- Version 1.0 11/01/2012 Scott Larson
-- Initial Public Release
-- Version 2.0 06/20/2014 Scott Larson
-- Added ability to interface with different slaves in the same transaction
-- Corrected ack_error bug where ack_error went 'Z' instead of '1' on error
-- Corrected timing of when ack_error signal clears
-- Version 2.1 10/21/2014 Scott Larson
-- Replaced gated clock with clock enable
-- Adjusted timing of SCL during start and stop conditions
-- Version 2.2 02/05/2015 Scott Larson
-- Corrected small SDA glitch introduced in version 2.1
--
--------------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;
--USE ieee.std_logic_unsigned.all;
ENTITY i2c_master IS
GENERIC(
input_clk : INTEGER := 50_000_000; --input clock speed from user logic in Hz
bus_clk : INTEGER := 400_000); --speed the i2c bus (scl) will run at in Hz
PORT(
clk : IN STD_LOGIC; --system clock
reset_n : IN STD_LOGIC; --active low reset
ena : IN STD_LOGIC; --latch in command
addr : IN STD_LOGIC_VECTOR(6 DOWNTO 0); --address of target slave
rw : IN STD_LOGIC; --'0' is write, '1' is read
data_wr : IN STD_LOGIC_VECTOR(7 DOWNTO 0); --data to write to slave
busy : OUT STD_LOGIC; --indicates transaction in progress
data_rd : OUT STD_LOGIC_VECTOR(7 DOWNTO 0); --data read from slave
ack_error : BUFFER STD_LOGIC; --flag if improper acknowledge from slave
sda : INOUT STD_LOGIC; --serial data output of i2c bus
scl : INOUT STD_LOGIC; --serial clock output of i2c bus
scl_invert: IN STD_LOGIC --true if need to invert output SCL signal
);
END i2c_master;
ARCHITECTURE logic OF i2c_master IS
CONSTANT divider : INTEGER := (input_clk/bus_clk)/4; --number of clocks in 1/4 cycle of scl
TYPE machine IS(ready, start, command, slv_ack1, wr, rd, slv_ack2, mstr_ack, stop); --needed states
SIGNAL state : machine; --state machine
SIGNAL data_clk : STD_LOGIC; --data clock for sda
SIGNAL data_clk_prev : STD_LOGIC; --data clock during previous system clock
SIGNAL scl_clk : STD_LOGIC; --constantly running internal scl
SIGNAL scl_ena : STD_LOGIC := '0'; --enables internal scl to output
SIGNAL sda_int : STD_LOGIC := '1'; --internal sda
SIGNAL sda_ena_n : STD_LOGIC; --enables internal sda to output
SIGNAL addr_rw : STD_LOGIC_VECTOR(7 DOWNTO 0); --latched in address and read/write
SIGNAL data_tx : STD_LOGIC_VECTOR(7 DOWNTO 0); --latched in data to write to slave
SIGNAL data_rx : STD_LOGIC_VECTOR(7 DOWNTO 0); --data received from slave
SIGNAL bit_cnt : INTEGER RANGE 0 TO 7 := 7; --tracks bit number in transaction
SIGNAL stretch : STD_LOGIC := '0'; --identifies if slave is stretching scl
BEGIN
--generate the timing for the bus clock (scl_clk) and the data clock (data_clk)
PROCESS(clk, reset_n)
VARIABLE count : INTEGER RANGE 0 TO divider*4; --timing for clock generation
BEGIN
IF(reset_n = '0') THEN --reset asserted
stretch <= '0';
count := 0;
ELSIF(clk'EVENT AND clk = '1') THEN
data_clk_prev <= data_clk; --store previous value of data clock
IF(count = divider*4-1) THEN --end of timing cycle
count := 0; --reset timer
ELSIF(stretch = '0') THEN --clock stretching from slave not detected
count := count + 1; --continue clock generation timing
END IF;
CASE count IS
WHEN 0 TO divider-1 => --first 1/4 cycle of clocking
scl_clk <= '0';
data_clk <= '0';
WHEN divider TO divider*2-1 => --second 1/4 cycle of clocking
scl_clk <= '0';
data_clk <= '1';
WHEN divider*2 TO divider*3-1 => --third 1/4 cycle of clocking
scl_clk <= '1'; --release scl
IF(scl = '0') THEN --detect if slave is stretching clock
stretch <= '1';
ELSE
stretch <= '0';
END IF;
data_clk <= '1';
WHEN OTHERS => --last 1/4 cycle of clocking
scl_clk <= '1';
data_clk <= '0';
END CASE;
END IF;
END PROCESS;
--state machine and writing to sda during scl low (data_clk rising edge)
PROCESS(clk, reset_n)
BEGIN
IF(reset_n = '0') THEN --reset asserted
state <= ready; --return to initial state
busy <= '1'; --indicate not available
scl_ena <= '0'; --sets scl high impedance
sda_int <= '1'; --sets sda high impedance
ack_error <= '0'; --clear acknowledge error flag
bit_cnt <= 7; --restarts data bit counter
data_rd <= "00000000"; --clear data read port
ELSIF(clk'EVENT AND clk = '1') THEN
IF(data_clk = '1' AND data_clk_prev = '0') THEN --data clock rising edge
CASE state IS
WHEN ready => --idle state
IF(ena = '1') THEN --transaction requested
busy <= '1'; --flag busy
addr_rw <= addr & rw; --collect requested slave address and command
data_tx <= data_wr; --collect requested data to write
state <= start; --go to start bit
ELSE --remain idle
busy <= '0'; --unflag busy
state <= ready; --remain idle
END IF;
WHEN start => --start bit of transaction
busy <= '1'; --resume busy if continuous mode
sda_int <= addr_rw(bit_cnt); --set first address bit to bus
state <= command; --go to command
WHEN command => --address and command byte of transaction
IF(bit_cnt = 0) THEN --command transmit finished
sda_int <= '1'; --release sda for slave acknowledge
bit_cnt <= 7; --reset bit counter for "byte" states
state <= slv_ack1; --go to slave acknowledge (command)
ELSE --next clock cycle of command state
bit_cnt <= bit_cnt - 1; --keep track of transaction bits
sda_int <= addr_rw(bit_cnt-1); --write address/command bit to bus
state <= command; --continue with command
END IF;
WHEN slv_ack1 => --slave acknowledge bit (command)
IF(addr_rw(0) = '0') THEN --write command
sda_int <= data_tx(bit_cnt); --write first bit of data
state <= wr; --go to write byte
ELSE --read command
sda_int <= '1'; --release sda from incoming data
state <= rd; --go to read byte
END IF;
WHEN wr => --write byte of transaction
busy <= '1'; --resume busy if continuous mode
IF(bit_cnt = 0) THEN --write byte transmit finished
sda_int <= '1'; --release sda for slave acknowledge
bit_cnt <= 7; --reset bit counter for "byte" states
state <= slv_ack2; --go to slave acknowledge (write)
ELSE --next clock cycle of write state
bit_cnt <= bit_cnt - 1; --keep track of transaction bits
sda_int <= data_tx(bit_cnt-1); --write next bit to bus
state <= wr; --continue writing
END IF;
WHEN rd => --read byte of transaction
busy <= '1'; --resume busy if continuous mode
IF(bit_cnt = 0) THEN --read byte receive finished
IF(ena = '1' AND addr_rw = addr & rw) THEN --continuing with another read at same address
sda_int <= '0'; --acknowledge the byte has been received
ELSE --stopping or continuing with a write
sda_int <= '1'; --send a no-acknowledge (before stop or repeated start)
END IF;
bit_cnt <= 7; --reset bit counter for "byte" states
data_rd <= data_rx; --output received data
state <= mstr_ack; --go to master acknowledge
ELSE --next clock cycle of read state
bit_cnt <= bit_cnt - 1; --keep track of transaction bits
state <= rd; --continue reading
END IF;
WHEN slv_ack2 => --slave acknowledge bit (write)
IF(ena = '1') THEN --continue transaction
busy <= '0'; --continue is accepted
addr_rw <= addr & rw; --collect requested slave address and command
data_tx <= data_wr; --collect requested data to write
IF(addr_rw = addr & rw) THEN --continue transaction with another write
sda_int <= data_wr(bit_cnt); --write first bit of data
state <= wr; --go to write byte
ELSE --continue transaction with a read or new slave
state <= start; --go to repeated start
END IF;
ELSE --complete transaction
state <= stop; --go to stop bit
END IF;
WHEN mstr_ack => --master acknowledge bit after a read
IF(ena = '1') THEN --continue transaction
busy <= '0'; --continue is accepted and data received is available on bus
addr_rw <= addr & rw; --collect requested slave address and command
data_tx <= data_wr; --collect requested data to write
IF(addr_rw = addr & rw) THEN --continue transaction with another read
sda_int <= '1'; --release sda from incoming data
state <= rd; --go to read byte
ELSE --continue transaction with a write or new slave
state <= start; --repeated start
END IF;
ELSE --complete transaction
state <= stop; --go to stop bit
END IF;
WHEN stop => --stop bit of transaction
busy <= '0'; --unflag busy
state <= ready; --go to idle state
END CASE;
ELSIF(data_clk = '0' AND data_clk_prev = '1') THEN --data clock falling edge
CASE state IS
WHEN start =>
IF(scl_ena = '0') THEN --starting new transaction
scl_ena <= '1'; --enable scl output
ack_error <= '0'; --reset acknowledge error output
END IF;
WHEN slv_ack1 => --receiving slave acknowledge (command)
IF(sda /= '0' OR ack_error = '1') THEN --no-acknowledge or previous no-acknowledge
ack_error <= '1'; --set error output if no-acknowledge
END IF;
WHEN rd => --receiving slave data
data_rx(bit_cnt) <= sda; --receive current slave data bit
WHEN slv_ack2 => --receiving slave acknowledge (write)
IF(sda /= '0' OR ack_error = '1') THEN --no-acknowledge or previous no-acknowledge
ack_error <= '1'; --set error output if no-acknowledge
END IF;
WHEN stop =>
scl_ena <= '0'; --disable scl
WHEN OTHERS =>
NULL;
END CASE;
END IF;
END IF;
END PROCESS;
--set sda output
WITH state SELECT
sda_ena_n <= data_clk_prev WHEN start, --generate start condition
NOT data_clk_prev WHEN stop, --generate stop condition
sda_int WHEN OTHERS; --set to internal sda signal
--set scl and sda outputs
--scl <= '0' WHEN (scl_ena = '1' AND scl_clk = '0') ELSE 'Z';
scl <= '0' WHEN (scl_ena = '1' AND scl_clk = '0' AND scl_invert = '0') ELSE
'1' WHEN (scl_ena = '1' AND scl_clk = '0' AND scl_invert = '1') ELSE
'Z';
sda <= '0' WHEN sda_ena_n = '0' ELSE 'Z';
END logic;

301
i2c_slave.vhd Normal file
View File

@ -0,0 +1,301 @@
------------------------------------------------------------
-- File : I2C_slave.vhd
------------------------------------------------------------
-- Author : Peter Samarin <peter.samarin@gmail.com>
------------------------------------------------------------
-- Copyright (c) 2016 Peter Samarin
------------------------------------------------------------
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
------------------------------------------------------------
entity i2c_slave is
generic (
SLAVE_ADDR : std_logic_vector(6 downto 0));
port (
scl : inout std_logic;
sda : inout std_logic;
clk : in std_logic;
rst : in std_logic;
-- User interface
read_req : out std_logic;
data_to_master : in std_logic_vector(7 downto 0);
data_valid : out std_logic;
data_from_master : out std_logic_vector(7 downto 0));
end entity i2c_slave;
------------------------------------------------------------
architecture arch of i2c_slave is
-- this assumes that system's clock is much faster than SCL
constant DEBOUNCING_WAIT_CYCLES : integer := 4;
type state_t is (idle, get_address_and_cmd,
answer_ack_start, write,
read, read_ack_start,
read_ack_got_rising, read_stop);
-- I2C state management
signal state_reg : state_t := idle;
signal cmd_reg : std_logic := '0';
signal bits_processed_reg : integer range 0 to 8 := 0;
signal continue_reg : std_logic := '0';
signal scl_reg : std_logic := '1';
signal sda_reg : std_logic := '1';
signal scl_debounced : std_logic := '1';
signal sda_debounced : std_logic := '1';
-- Helpers to figure out next state
signal start_reg : std_logic := '0';
signal stop_reg : std_logic := '0';
signal scl_rising_reg : std_logic := '0';
signal scl_falling_reg : std_logic := '0';
-- Address and data received from master
signal addr_reg : std_logic_vector(6 downto 0) := (others => '0');
signal data_reg : std_logic_vector(6 downto 0) := (others => '0');
signal data_from_master_reg : std_logic_vector(7 downto 0) := (others => '0');
signal scl_prev_reg : std_logic := '1';
-- Slave writes on scl
signal scl_wen_reg : std_logic := '0';
signal scl_o_reg : std_logic := '0';
signal sda_prev_reg : std_logic := '1';
-- Slave writes on sda
signal sda_wen_reg : std_logic := '0';
signal sda_o_reg : std_logic := '0';
-- User interface
signal data_valid_reg : std_logic := '0';
signal read_req_reg : std_logic := '0';
signal data_to_master_reg : std_logic_vector(7 downto 0) := (others => '0');
begin
-- debounce SCL and SDA
SCL_debounce : entity work.debounce
generic map (
WAIT_CYCLES => DEBOUNCING_WAIT_CYCLES)
port map (
clk => clk,
signal_in => scl_reg,
signal_out => scl_debounced);
-- it might not make sense to debounce SDA, since master
-- and slave can both write to it...
SDA_debounce : entity work.debounce
generic map (
WAIT_CYCLES => DEBOUNCING_WAIT_CYCLES)
port map (
clk => clk,
signal_in => sda_reg,
signal_out => sda_debounced);
process (clk) is
begin
if rising_edge(clk) then
-- save SCL in registers that are used for debouncing
scl_reg <= scl;
sda_reg <= sda;
-- Delay debounced SCL and SDA by 1 clock cycle
scl_prev_reg <= scl_debounced;
sda_prev_reg <= sda_debounced;
-- Detect rising and falling SCL
scl_rising_reg <= '0';
if scl_prev_reg = '0' and scl_debounced = '1' then
scl_rising_reg <= '1';
end if;
scl_falling_reg <= '0';
if scl_prev_reg = '1' and scl_debounced = '0' then
scl_falling_reg <= '1';
end if;
-- Detect I2C START condition
start_reg <= '0';
stop_reg <= '0';
if scl_debounced = '1' and scl_prev_reg = '1' and
sda_prev_reg = '1' and sda_debounced = '0' then
start_reg <= '1';
stop_reg <= '0';
end if;
-- Detect I2C STOP condition
if scl_prev_reg = '1' and scl_debounced = '1' and
sda_prev_reg = '0' and sda_debounced = '1' then
start_reg <= '0';
stop_reg <= '1';
end if;
end if;
end process;
----------------------------------------------------------
-- I2C state machine
----------------------------------------------------------
process (clk) is
begin
if rising_edge(clk) then
-- Default assignments
sda_o_reg <= '0';
sda_wen_reg <= '0';
-- User interface
data_valid_reg <= '0';
read_req_reg <= '0';
case state_reg is
when idle =>
if start_reg = '1' then
state_reg <= get_address_and_cmd;
bits_processed_reg <= 0;
end if;
when get_address_and_cmd =>
if scl_rising_reg = '1' then
if bits_processed_reg < 7 then
bits_processed_reg <= bits_processed_reg + 1;
addr_reg(6-bits_processed_reg) <= sda_debounced;
elsif bits_processed_reg = 7 then
bits_processed_reg <= bits_processed_reg + 1;
cmd_reg <= sda_debounced;
end if;
end if;
if bits_processed_reg = 8 and scl_falling_reg = '1' then
bits_processed_reg <= 0;
if addr_reg = SLAVE_ADDR then -- check req address
state_reg <= answer_ack_start;
if cmd_reg = '1' then -- issue read request
read_req_reg <= '1';
data_to_master_reg <= data_to_master;
end if;
else
assert false
report ("I2C: target/slave address mismatch (data is being sent to another slave).")
severity note;
state_reg <= idle;
end if;
end if;
----------------------------------------------------
-- I2C acknowledge to master
----------------------------------------------------
when answer_ack_start =>
sda_wen_reg <= '1';
sda_o_reg <= '0';
if scl_falling_reg = '1' then
if cmd_reg = '0' then
state_reg <= write;
else
state_reg <= read;
end if;
end if;
----------------------------------------------------
-- WRITE
----------------------------------------------------
when write =>
if scl_rising_reg = '1' then
bits_processed_reg <= bits_processed_reg + 1;
if bits_processed_reg < 7 then
data_reg(6-bits_processed_reg) <= sda_debounced;
else
data_from_master_reg <= data_reg & sda_debounced;
data_valid_reg <= '1';
end if;
end if;
if scl_falling_reg = '1' and bits_processed_reg = 8 then
state_reg <= answer_ack_start;
bits_processed_reg <= 0;
end if;
----------------------------------------------------
-- READ: send data to master
----------------------------------------------------
when read =>
sda_wen_reg <= '1';
sda_o_reg <= data_to_master_reg(7-bits_processed_reg);
if scl_falling_reg = '1' then
if bits_processed_reg < 7 then
bits_processed_reg <= bits_processed_reg + 1;
elsif bits_processed_reg = 7 then
state_reg <= read_ack_start;
bits_processed_reg <= 0;
end if;
end if;
----------------------------------------------------
-- I2C read master acknowledge
----------------------------------------------------
when read_ack_start =>
if scl_rising_reg = '1' then
state_reg <= read_ack_got_rising;
if sda_debounced = '1' then -- nack = stop read
continue_reg <= '0';
else -- ack = continue read
continue_reg <= '1';
read_req_reg <= '1'; -- request reg byte
data_to_master_reg <= data_to_master;
end if;
end if;
when read_ack_got_rising =>
if scl_falling_reg = '1' then
if continue_reg = '1' then
if cmd_reg = '0' then
state_reg <= write;
else
state_reg <= read;
end if;
else
state_reg <= read_stop;
end if;
end if;
-- Wait for START or STOP to get out of this state
when read_stop =>
null;
-- Wait for START or STOP to get out of this state
when others =>
assert false
report ("I2C: error: ended in an impossible state.")
severity error;
state_reg <= idle;
end case;
--------------------------------------------------------
-- Reset counter and state on start/stop
--------------------------------------------------------
if start_reg = '1' then
state_reg <= get_address_and_cmd;
bits_processed_reg <= 0;
end if;
if stop_reg = '1' then
state_reg <= idle;
bits_processed_reg <= 0;
end if;
if rst = '1' then
state_reg <= idle;
end if;
end if;
end process;
----------------------------------------------------------
-- I2C interface
----------------------------------------------------------
sda <= sda_o_reg when sda_wen_reg = '1' else
'Z';
scl <= scl_o_reg when scl_wen_reg = '1' else
'Z';
----------------------------------------------------------
-- User interface
----------------------------------------------------------
-- Master writes
data_valid <= data_valid_reg;
data_from_master <= data_from_master_reg;
-- Master reads
read_req <= read_req_reg;
end architecture arch;

358
sim_mux.vhd Normal file
View File

@ -0,0 +1,358 @@
library ieee;
use ieee.std_logic_1164.all;
use work.sim_switcher_pkg.all;
------------------------------------------------------------
entity sim_mux is
port (
reg_sim_modemnum : arr_modnum_t(0 to 7);
sim_rst_o : out std_logic_vector(7 downto 0);
mod_simrst_i : in std_logic_vector(7 downto 0);
sim_clk_o : out std_logic_vector(7 downto 0);
mod_clk_i : in std_logic_vector(7 downto 0);
mod_detect_o : out std_logic_vector(3 downto 0);
sim_detect_i : in std_logic_vector(7 downto 0);
sw_mod_data_i : out std_logic_vector(7 downto 0); -- For switched tri-state buffer there are input and output part of
mod_data_i : in std_logic_vector(7 downto 0); -- the lines which are switched transparently, thus ports
mod_data_o : out std_logic_vector(7 downto 0); -- sw_mod_data_i is actual output and sw_mod_data_o is
sw_mod_data_o : in std_logic_vector(7 downto 0) -- actual input. Please, don't be confused.
);
end entity sim_mux;
------------------------------------------------------------
architecture arch of sim_mux is
begin
-- Switch lines of SIM according to connected MODEM
sim_rst_o(0) <= mod_simrst_i(0) when reg_sim_modemnum(0) = 0
else mod_simrst_i(1) when reg_sim_modemnum(0) = 1
else mod_simrst_i(2) when reg_sim_modemnum(0) = 2
else mod_simrst_i(3) when reg_sim_modemnum(0) = 3
else mod_simrst_i(4) when reg_sim_modemnum(0) = 4
else mod_simrst_i(5) when reg_sim_modemnum(0) = 5
else mod_simrst_i(6) when reg_sim_modemnum(0) = 6
else mod_simrst_i(7) when reg_sim_modemnum(0) = 7
else 'Z';
sim_rst_o(1) <= mod_simrst_i(0) when reg_sim_modemnum(1) = 0
else mod_simrst_i(1) when reg_sim_modemnum(1) = 1
else mod_simrst_i(2) when reg_sim_modemnum(1) = 2
else mod_simrst_i(3) when reg_sim_modemnum(1) = 3
else mod_simrst_i(4) when reg_sim_modemnum(1) = 4
else mod_simrst_i(5) when reg_sim_modemnum(1) = 5
else mod_simrst_i(6) when reg_sim_modemnum(1) = 6
else mod_simrst_i(7) when reg_sim_modemnum(1) = 7
else 'Z';
sim_rst_o(2) <= mod_simrst_i(0) when reg_sim_modemnum(2) = 0
else mod_simrst_i(1) when reg_sim_modemnum(2) = 1
else mod_simrst_i(2) when reg_sim_modemnum(2) = 2
else mod_simrst_i(3) when reg_sim_modemnum(2) = 3
else mod_simrst_i(4) when reg_sim_modemnum(2) = 4
else mod_simrst_i(5) when reg_sim_modemnum(2) = 5
else mod_simrst_i(6) when reg_sim_modemnum(2) = 6
else mod_simrst_i(7) when reg_sim_modemnum(2) = 7
else 'Z';
sim_rst_o(3) <= mod_simrst_i(0) when reg_sim_modemnum(3) = 0
else mod_simrst_i(1) when reg_sim_modemnum(3) = 1
else mod_simrst_i(2) when reg_sim_modemnum(3) = 2
else mod_simrst_i(3) when reg_sim_modemnum(3) = 3
else mod_simrst_i(4) when reg_sim_modemnum(3) = 4
else mod_simrst_i(5) when reg_sim_modemnum(3) = 5
else mod_simrst_i(6) when reg_sim_modemnum(3) = 6
else mod_simrst_i(7) when reg_sim_modemnum(3) = 7
else 'Z';
sim_rst_o(4) <= mod_simrst_i(0) when reg_sim_modemnum(4) = 0
else mod_simrst_i(1) when reg_sim_modemnum(4) = 1
else mod_simrst_i(2) when reg_sim_modemnum(4) = 2
else mod_simrst_i(3) when reg_sim_modemnum(4) = 3
else mod_simrst_i(4) when reg_sim_modemnum(4) = 4
else mod_simrst_i(5) when reg_sim_modemnum(4) = 5
else mod_simrst_i(6) when reg_sim_modemnum(4) = 6
else mod_simrst_i(7) when reg_sim_modemnum(4) = 7
else 'Z';
sim_rst_o(5) <= mod_simrst_i(0) when reg_sim_modemnum(5) = 0
else mod_simrst_i(1) when reg_sim_modemnum(5) = 1
else mod_simrst_i(2) when reg_sim_modemnum(5) = 2
else mod_simrst_i(3) when reg_sim_modemnum(5) = 3
else mod_simrst_i(4) when reg_sim_modemnum(5) = 4
else mod_simrst_i(5) when reg_sim_modemnum(5) = 5
else mod_simrst_i(6) when reg_sim_modemnum(5) = 6
else mod_simrst_i(7) when reg_sim_modemnum(5) = 7
else 'Z';
sim_rst_o(6) <= mod_simrst_i(0) when reg_sim_modemnum(6) = 0
else mod_simrst_i(1) when reg_sim_modemnum(6) = 1
else mod_simrst_i(2) when reg_sim_modemnum(6) = 2
else mod_simrst_i(3) when reg_sim_modemnum(6) = 3
else mod_simrst_i(4) when reg_sim_modemnum(6) = 4
else mod_simrst_i(5) when reg_sim_modemnum(6) = 5
else mod_simrst_i(6) when reg_sim_modemnum(6) = 6
else mod_simrst_i(7) when reg_sim_modemnum(6) = 7
else 'Z';
sim_rst_o(7) <= mod_simrst_i(0) when reg_sim_modemnum(7) = 0
else mod_simrst_i(1) when reg_sim_modemnum(7) = 1
else mod_simrst_i(2) when reg_sim_modemnum(7) = 2
else mod_simrst_i(3) when reg_sim_modemnum(7) = 3
else mod_simrst_i(4) when reg_sim_modemnum(7) = 4
else mod_simrst_i(5) when reg_sim_modemnum(7) = 5
else mod_simrst_i(6) when reg_sim_modemnum(7) = 6
else mod_simrst_i(7) when reg_sim_modemnum(7) = 7
else 'Z';
-- Switch CLK line of SIM according to connected MODEM
sim_clk_o(0) <= mod_clk_i(0) when reg_sim_modemnum(0) = 0
else mod_clk_i(1) when reg_sim_modemnum(0) = 1
else mod_clk_i(2) when reg_sim_modemnum(0) = 2
else mod_clk_i(3) when reg_sim_modemnum(0) = 3
else mod_clk_i(4) when reg_sim_modemnum(0) = 4
else mod_clk_i(5) when reg_sim_modemnum(0) = 5
else mod_clk_i(6) when reg_sim_modemnum(0) = 6
else mod_clk_i(7) when reg_sim_modemnum(0) = 7
else 'Z';
sim_clk_o(1) <= mod_clk_i(0) when reg_sim_modemnum(1) = 0
else mod_clk_i(1) when reg_sim_modemnum(1) = 1
else mod_clk_i(2) when reg_sim_modemnum(1) = 2
else mod_clk_i(3) when reg_sim_modemnum(1) = 3
else mod_clk_i(4) when reg_sim_modemnum(1) = 4
else mod_clk_i(5) when reg_sim_modemnum(1) = 5
else mod_clk_i(6) when reg_sim_modemnum(1) = 6
else mod_clk_i(7) when reg_sim_modemnum(1) = 7
else 'Z';
sim_clk_o(2) <= mod_clk_i(0) when reg_sim_modemnum(2) = 0
else mod_clk_i(1) when reg_sim_modemnum(2) = 1
else mod_clk_i(2) when reg_sim_modemnum(2) = 2
else mod_clk_i(3) when reg_sim_modemnum(2) = 3
else mod_clk_i(4) when reg_sim_modemnum(2) = 4
else mod_clk_i(5) when reg_sim_modemnum(2) = 5
else mod_clk_i(6) when reg_sim_modemnum(2) = 6
else mod_clk_i(7) when reg_sim_modemnum(2) = 7
else 'Z';
sim_clk_o(3) <= mod_clk_i(0) when reg_sim_modemnum(3) = 0
else mod_clk_i(1) when reg_sim_modemnum(3) = 1
else mod_clk_i(2) when reg_sim_modemnum(3) = 2
else mod_clk_i(3) when reg_sim_modemnum(3) = 3
else mod_clk_i(4) when reg_sim_modemnum(3) = 4
else mod_clk_i(5) when reg_sim_modemnum(3) = 5
else mod_clk_i(6) when reg_sim_modemnum(3) = 6
else mod_clk_i(7) when reg_sim_modemnum(3) = 7
else 'Z';
sim_clk_o(4) <= mod_clk_i(0) when reg_sim_modemnum(4) = 0
else mod_clk_i(1) when reg_sim_modemnum(4) = 1
else mod_clk_i(2) when reg_sim_modemnum(4) = 2
else mod_clk_i(3) when reg_sim_modemnum(4) = 3
else mod_clk_i(4) when reg_sim_modemnum(4) = 4
else mod_clk_i(5) when reg_sim_modemnum(4) = 5
else mod_clk_i(6) when reg_sim_modemnum(4) = 6
else mod_clk_i(7) when reg_sim_modemnum(4) = 7
else 'Z';
sim_clk_o(5) <= mod_clk_i(0) when reg_sim_modemnum(5) = 0
else mod_clk_i(1) when reg_sim_modemnum(5) = 1
else mod_clk_i(2) when reg_sim_modemnum(5) = 2
else mod_clk_i(3) when reg_sim_modemnum(5) = 3
else mod_clk_i(4) when reg_sim_modemnum(5) = 4
else mod_clk_i(5) when reg_sim_modemnum(5) = 5
else mod_clk_i(6) when reg_sim_modemnum(5) = 6
else mod_clk_i(7) when reg_sim_modemnum(5) = 7
else 'Z';
sim_clk_o(6) <= mod_clk_i(0) when reg_sim_modemnum(6) = 0
else mod_clk_i(1) when reg_sim_modemnum(6) = 1
else mod_clk_i(2) when reg_sim_modemnum(6) = 2
else mod_clk_i(3) when reg_sim_modemnum(6) = 3
else mod_clk_i(4) when reg_sim_modemnum(6) = 4
else mod_clk_i(5) when reg_sim_modemnum(6) = 5
else mod_clk_i(6) when reg_sim_modemnum(6) = 6
else mod_clk_i(7) when reg_sim_modemnum(6) = 7
else 'Z';
sim_clk_o(7) <= mod_clk_i(0) when reg_sim_modemnum(7) = 0
else mod_clk_i(1) when reg_sim_modemnum(7) = 1
else mod_clk_i(2) when reg_sim_modemnum(7) = 2
else mod_clk_i(3) when reg_sim_modemnum(7) = 3
else mod_clk_i(4) when reg_sim_modemnum(7) = 4
else mod_clk_i(5) when reg_sim_modemnum(7) = 5
else mod_clk_i(6) when reg_sim_modemnum(7) = 6
else mod_clk_i(7) when reg_sim_modemnum(7) = 7
else 'Z';
-- Switch SIM DETECT line of SIM according to connected MODEM,
mod_detect_o(0) <= sim_detect_i(0) when reg_sim_modemnum(0) = 0
else sim_detect_i(1) when reg_sim_modemnum(1) = 0
else sim_detect_i(2) when reg_sim_modemnum(2) = 0
else sim_detect_i(3) when reg_sim_modemnum(3) = 0
else sim_detect_i(4) when reg_sim_modemnum(4) = 0
else sim_detect_i(5) when reg_sim_modemnum(5) = 0
else sim_detect_i(6) when reg_sim_modemnum(6) = 0
else sim_detect_i(7) when reg_sim_modemnum(7) = 0
else 'Z';
mod_detect_o(1) <= sim_detect_i(0) when reg_sim_modemnum(0) = 1
else sim_detect_i(1) when reg_sim_modemnum(1) = 1
else sim_detect_i(2) when reg_sim_modemnum(2) = 1
else sim_detect_i(3) when reg_sim_modemnum(3) = 1
else sim_detect_i(4) when reg_sim_modemnum(4) = 1
else sim_detect_i(5) when reg_sim_modemnum(5) = 1
else sim_detect_i(6) when reg_sim_modemnum(6) = 1
else sim_detect_i(7) when reg_sim_modemnum(7) = 1
else 'Z';
mod_detect_o(2) <= sim_detect_i(0) when reg_sim_modemnum(0) = 2
else sim_detect_i(1) when reg_sim_modemnum(1) = 2
else sim_detect_i(2) when reg_sim_modemnum(2) = 2
else sim_detect_i(3) when reg_sim_modemnum(3) = 2
else sim_detect_i(4) when reg_sim_modemnum(4) = 2
else sim_detect_i(5) when reg_sim_modemnum(5) = 2
else sim_detect_i(6) when reg_sim_modemnum(6) = 2
else sim_detect_i(7) when reg_sim_modemnum(7) = 2
else 'Z';
mod_detect_o(3) <= sim_detect_i(0) when reg_sim_modemnum(0) = 3
else sim_detect_i(1) when reg_sim_modemnum(1) = 3
else sim_detect_i(2) when reg_sim_modemnum(2) = 3
else sim_detect_i(3) when reg_sim_modemnum(3) = 3
else sim_detect_i(4) when reg_sim_modemnum(4) = 3
else sim_detect_i(5) when reg_sim_modemnum(5) = 3
else sim_detect_i(6) when reg_sim_modemnum(6) = 3
else sim_detect_i(7) when reg_sim_modemnum(7) = 3
else 'Z';
sw_mod_data_i(0) <= mod_data_i(0) when reg_sim_modemnum(0) = 0
else mod_data_i(1) when reg_sim_modemnum(0) = 1
else mod_data_i(2) when reg_sim_modemnum(0) = 2
else mod_data_i(3) when reg_sim_modemnum(0) = 3
else mod_data_i(4) when reg_sim_modemnum(0) = 4
else mod_data_i(5) when reg_sim_modemnum(0) = 5
else mod_data_i(6) when reg_sim_modemnum(0) = 6
else mod_data_i(7) when reg_sim_modemnum(0) = 7
else '1';
sw_mod_data_i(1) <= mod_data_i(0) when reg_sim_modemnum(1) = 0
else mod_data_i(1) when reg_sim_modemnum(1) = 1
else mod_data_i(2) when reg_sim_modemnum(1) = 2
else mod_data_i(3) when reg_sim_modemnum(1) = 3
else mod_data_i(4) when reg_sim_modemnum(1) = 4
else mod_data_i(5) when reg_sim_modemnum(1) = 5
else mod_data_i(6) when reg_sim_modemnum(1) = 6
else mod_data_i(7) when reg_sim_modemnum(1) = 7
else '1';
sw_mod_data_i(2) <= mod_data_i(0) when reg_sim_modemnum(2) = 0
else mod_data_i(1) when reg_sim_modemnum(2) = 1
else mod_data_i(2) when reg_sim_modemnum(2) = 2
else mod_data_i(3) when reg_sim_modemnum(2) = 3
else mod_data_i(4) when reg_sim_modemnum(2) = 4
else mod_data_i(5) when reg_sim_modemnum(2) = 5
else mod_data_i(6) when reg_sim_modemnum(2) = 6
else mod_data_i(7) when reg_sim_modemnum(2) = 7
else '1';
sw_mod_data_i(3) <= mod_data_i(0) when reg_sim_modemnum(3) = 0
else mod_data_i(1) when reg_sim_modemnum(3) = 1
else mod_data_i(2) when reg_sim_modemnum(3) = 2
else mod_data_i(3) when reg_sim_modemnum(3) = 3
else mod_data_i(4) when reg_sim_modemnum(3) = 4
else mod_data_i(5) when reg_sim_modemnum(3) = 5
else mod_data_i(6) when reg_sim_modemnum(3) = 6
else mod_data_i(7) when reg_sim_modemnum(3) = 7
else '1';
sw_mod_data_i(4) <= mod_data_i(0) when reg_sim_modemnum(4) = 0
else mod_data_i(1) when reg_sim_modemnum(4) = 1
else mod_data_i(2) when reg_sim_modemnum(4) = 2
else mod_data_i(3) when reg_sim_modemnum(4) = 3
else mod_data_i(4) when reg_sim_modemnum(4) = 4
else mod_data_i(5) when reg_sim_modemnum(4) = 5
else mod_data_i(6) when reg_sim_modemnum(4) = 6
else mod_data_i(7) when reg_sim_modemnum(4) = 7
else '1';
sw_mod_data_i(5) <= mod_data_i(0) when reg_sim_modemnum(5) = 0
else mod_data_i(1) when reg_sim_modemnum(5) = 1
else mod_data_i(2) when reg_sim_modemnum(5) = 2
else mod_data_i(3) when reg_sim_modemnum(5) = 3
else mod_data_i(4) when reg_sim_modemnum(5) = 4
else mod_data_i(5) when reg_sim_modemnum(5) = 5
else mod_data_i(6) when reg_sim_modemnum(5) = 6
else mod_data_i(7) when reg_sim_modemnum(5) = 7
else '1';
sw_mod_data_i(6) <= mod_data_i(0) when reg_sim_modemnum(6) = 0
else mod_data_i(1) when reg_sim_modemnum(6) = 1
else mod_data_i(2) when reg_sim_modemnum(6) = 2
else mod_data_i(3) when reg_sim_modemnum(6) = 3
else mod_data_i(4) when reg_sim_modemnum(6) = 4
else mod_data_i(5) when reg_sim_modemnum(6) = 5
else mod_data_i(6) when reg_sim_modemnum(6) = 6
else mod_data_i(7) when reg_sim_modemnum(6) = 7
else '1';
sw_mod_data_i(7) <= mod_data_i(0) when reg_sim_modemnum(7) = 0
else mod_data_i(1) when reg_sim_modemnum(7) = 1
else mod_data_i(2) when reg_sim_modemnum(7) = 2
else mod_data_i(3) when reg_sim_modemnum(7) = 3
else mod_data_i(4) when reg_sim_modemnum(7) = 4
else mod_data_i(5) when reg_sim_modemnum(7) = 5
else mod_data_i(6) when reg_sim_modemnum(7) = 6
else mod_data_i(7) when reg_sim_modemnum(7) = 7
else '1';
mod_data_o(0) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 0
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 0
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 0
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 0
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 0
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 0
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 0
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 0
else 'Z';
mod_data_o(1) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 1
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 1
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 1
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 1
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 1
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 1
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 1
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 1
else 'Z';
mod_data_o(2) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 2
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 2
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 2
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 2
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 2
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 2
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 2
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 2
else 'Z';
mod_data_o(3) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 3
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 3
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 3
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 3
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 3
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 3
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 3
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 3
else 'Z';
mod_data_o(4) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 4
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 4
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 4
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 4
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 4
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 4
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 4
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 4
else 'Z';
mod_data_o(5) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 5
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 5
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 5
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 5
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 5
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 5
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 5
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 5
else 'Z';
mod_data_o(6) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 6
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 6
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 6
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 6
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 6
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 6
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 6
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 6
else 'Z';
mod_data_o(7) <= sw_mod_data_o(0) when reg_sim_modemnum(0) = 7
else sw_mod_data_o(1) when reg_sim_modemnum(1) = 7
else sw_mod_data_o(2) when reg_sim_modemnum(2) = 7
else sw_mod_data_o(3) when reg_sim_modemnum(3) = 7
else sw_mod_data_o(4) when reg_sim_modemnum(4) = 7
else sw_mod_data_o(5) when reg_sim_modemnum(5) = 7
else sw_mod_data_o(6) when reg_sim_modemnum(6) = 7
else sw_mod_data_o(7) when reg_sim_modemnum(7) = 7
else 'Z';
end architecture arch;

63
sim_switcher_pkg.vhd Normal file
View File

@ -0,0 +1,63 @@
library ieee;
use ieee.std_logic_1164.all;
use ieee.numeric_std.all;
package sim_switcher_pkg is
type arr_modnum_t is array (natural range <>) of natural range 0 to 15;
component sim_mux is
port (
reg_sim_modemnum : arr_modnum_t(0 to 7);
sim_rst_o : out std_logic_vector(7 downto 0);
mod_simrst_i : in std_logic_vector(7 downto 0);
sim_clk_o : out std_logic_vector(7 downto 0);
mod_clk_i : in std_logic_vector(7 downto 0);
mod_detect_o : out std_logic_vector(3 downto 0);
sim_detect_i : in std_logic_vector(7 downto 0);
sw_mod_data_i : out std_logic_vector(7 downto 0); -- For switched tri-state buffer there are input and output part of
mod_data_i : in std_logic_vector(7 downto 0); -- the lines which are switched transparently, thus ports
mod_data_o : out std_logic_vector(7 downto 0); -- sw_mod_data_i is actual output and sw_mod_data_o is
sw_mod_data_o : in std_logic_vector(7 downto 0) -- actual input. Please, don't be confused.
);
end component sim_mux;
component i2c_master IS
generic (
input_clk : integer := 50_000_000; --input clock speed from user logic in Hz
bus_clk : integer := 400_000 --speed the i2c bus (scl) will run at in Hz
);
port (
clk : in std_logic; --system clock
reset_n : in std_logic; --active low reset
ena : in std_logic; --latch in command
addr : in std_logic_vector(6 downto 0); --address of target slave
rw : in std_logic; --'0' is write, '1' is read
data_wr : in std_logic_vector(7 downto 0); --data to write to slave
busy : out std_logic; --indicates transaction in progress
data_rd : out std_logic_vector(7 downto 0); --data read from slave
ack_error : buffer std_logic; --flag if improper acknowledge from slave
sda : inout std_logic; --serial data output of i2c bus
scl : inout std_logic; --serial clock output of i2c bus
scl_invert: in std_logic --true if need to invert output SCL signal
);
end component i2c_master;
component i2c_slave is
generic (
SLAVE_ADDR : std_logic_vector(6 downto 0)
);
port (
scl : inout std_logic;
sda : inout std_logic;
clk : in std_logic;
rst : in std_logic;
-- User interface
read_req : out std_logic;
data_to_master : in std_logic_vector(7 downto 0);
data_valid : out std_logic;
data_from_master : out std_logic_vector(7 downto 0)
);
end component i2c_slave;
end package sim_switcher_pkg;

File diff suppressed because it is too large Load Diff